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Determining how feature maps in the cerebral
cortez adapt to sudden, focal damage is tmportant
for gaining a deeper understanding of neurological
illnesses such as stroke. In this paper we describe a
neural model of the region of primary sensory cor-
tez related to upper extremily proprioception, and
show how the feature map there reorganizes fol-
lowing a simulated lesion. A perilesion zone with
decreased activily appears and then gradually ez-
pands with time. These resulls differ from those
seen with previous models of cortical lesions, and
offer an alternative mechanism to the “ischemic
penumbra” seen in certain types of stroke.

INTRODUCTION

As neural modeling technology has matured
during the last several years there has been an
increasing interest in adopting neural models to
simulate disorders in neurology, neuropsychology,
and psychiatry. For example, models of memory
loss in dementia, epilepsy, aphasia, dyslexia, and
schizophrenia have been studied to obtain a better
understanding of the underlying pathophysiologi-
cal processes. A recent review summarizes this
rapidly growing area of research [8].

Many past computational models of the cere-
bral cortex have concentrated on map formation
since this is a prevalent organizational structure
in the mammalian brain[9]. A cortical map refers
to a representation of the body surface or external
world over the two-dimensional surface of the cere-
bral cortex. Cortical maps preserve a similarity re-
lationship for input patterns, and can be divided
into two classes. For topographic maps, similar-
ity of input patterns is measured in terms of their
geometric proximity; they occur, for example, in
mammalian somatosensory cortex. For feature
maps, the similarity measure can represent any
functional correspondence of the input patterns.
The well-known map of orientation-specificity in
visual cortex provides an example.” While com-
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putational models of topographic map formation
have been studied previously [5, 7], there has been
very little work on cortical lesioning with this class
of maps. Feature maps, which generalize the con-
cept of topographic maps, have also been modeled
[4, 6, 9] but to date no cortical lesioning stud-
ies have been done with this type of map to our
knowledge.

In this paper we describe the use of a neu-
ral model to simulate adaptation of the cerebral
cortex to a sudden focal lesion such as occurs in
stroke. Stroke is a major health problem in the
United States: it has long been the third leading
cause of death, and it carries an annual economic
cost of over $13 billion [1, 3]. In spite of this and
the complex, incompletely understood pathophys-
iological processes involved, very little past work
has been done to develop a computational model
of stroke. In fact, the one previous study that at-
tempted to model a small cortical lesion was not
successful in producing the spontaneous reorga-
nization seen in experimental animal studies [5].
Only during the past year was a neural model of
cortex that spontaneously reorganizes following an
acute focal lesion first reported [2, 10]. When a
small lesion was introduced into the cortical rep-
resentation of the sensory surface of the hand, the
model cortex reorganized so that the hand surface
originally represented by the lesioned area sponta-
neously reappeared in adjacent cortical areas, as
has been seen experimentally. Both of these stud-
ies applied lesions to topographic maps only.

Recently, we developed a model of cortical fea-
ture map formation based on proprioceptive input
from a simulated upper extremity [4]. Proprio-
ceptive cortex receives sensory information from
muscles, tendons and joints enabling the nervous
system to determine extremity position and move-
ment. In this paper we focus on sensory informa-
tion about muscle length and tension. In contrast
to the maps used in previous lesioning studies of
model cortex, this map is not a topographic rep-



resentation of skin surface but is a feature map of
individual sensory features (e.g., individual muscle
lengths and tensions). Surprisingly, the pattern of
reorganization observed was quite different from
that seen with previous lesion simulations of a to-
pographic map [2, 10]. A region of decreased ac-
tivity surrounding the lesion developed and then
gradually expanded. In the following, we describe
this result, offer an explanation for why it occurs,
and describe how it may relate to recent empirical
observations made in animal models of stroke.

METHODS

We briefly review our model of proprioceptive
map formation [4], and then describe how it is
lesioned.

Model Arm

Fig. 1 shows the structure of the neural model
of the proprioceptive cortex. Inputs to the arm
layer are calculated from a simulated model arm.
This model arm is a great simplification of biolog-
ical reality, and is intended as only a first effort
for modeling feature map formation in the motor
and somatosensory cortex [4]. It consists of upper
and lower arm segments, connected at the elbow.
It has only six generic muscles or muscle groups,
each of which corresponds to multiple muscles in
a real arm. We assume that there are four mus-
cles that control the upper arm and two muscles
that control the lower arm. Abductor and ad-
ductor muscles move the upper arm up and down
through 180°, respectively, while flexor and exten-
sor muscles move it forward and backward through
180°, respectively. The lower arm flexes and ex-
tends as much as 180° in a plane, controlled by
lower arm flexor and extensor muscles. When the
model arm is placed into a specific spatial position,
it generates input signals to the cortex from the
sensory neurons (“arm layer” in Fig. 1) that indi-
cate individual muscle lengths and tensions. The
biologically-oriented input to our model, based on
muscle stretch and tension, distinguishes it from
several previous robotically-oriented neural mod-
els of arm control where input is typically derived
from a camera (e.g., [9]). Further details on the
model arm can be found in [4].

Neural Computations

The model neural network has two separate
layers of units (Fig. 1), an arm layer and a pro-
prioceptive cortex layer. The arm layer consists of

861

Cortex layer
(20x20)
Wy

fully connected

Arm layer
L | s | | [ [ ]

muscle length muscle tension
(6) )

Figure 1: Structure of Neural Network Model

12 units which represent six muscle length and six
muscle tension measures. A length unit becomes
active when the corresponding muscle is stretched,
while a tension unit becomes active when the cor-
responding muscle produces tension through ac-
tive contraction. Each unit in the arm layer com-
petitively distributes its activation to every unit
in the cortex layer. The connection weights were
trained starting from an initial random uniform
distribution. The proprioceptive cortex layer con-
sists of a grid of 20 x 20 units. Each unit repre-
sents a cortical column, and is connected to its six
immediate neighboring units in a hexagonal tessel-
lation. To remove edge effects, units on the edges
of the cortical sheet are connected with units on
the opposite edges forming a torus.

A competitive activation mechanism is used to
control the spread of activation [4]. One distinct
feature of a competitive activation mechanism is
its ability to induce lateral inhibition among units,
and thus to support map formation, without us-
ing explicit inhibitory connections. The activation
level of unit k at time ¢, ax(t) is determined by

d_“d"_t(t_) = c,a(t) + (maz — ap(t))ine(t) (1)
where
ing(t) = ; cp z(:‘:zgzt-)'- _:):))Z’J aj(t). (2)

Here ¢, < 0,cp > 0,maz > 0 and ¢ > O are con-
stants. The weight of the connection from unit
J to unit k is denoted by w;j, which is assumed



to be zero if there is no connection between the
two units, as is the case with some intracortical
connections. Weights are a function of time, but
activation levels change much faster than weights.
The output from unit j to unit k is proportional
not only to the sender’s activation level a;(t), but
also to the receiver’s activation level, ax(2).

Connection weights are modified according to
competitive learning, a variant of Hebbian Learn-
ing that tends to change the incoming weight vec-
tors of the output units (cortical layer units) into
prototypes of the input patterns. Only the 4800
weights from the arm layer to the cortex layer
change and this occurs through the learning rule
Awgj = nla; — wijlay, where a} = ar — 0 if
ax > 0; and 0 otherwise (7 is a small learning con-
stant). The value @ is fixed throughout training.

Map Formation

A version of the neural model described above
was trained as follows. Random input signals to
the muscles were simulated as inputs to the model
arm. These inputs specified positions of the model
arm in 3-D space. From these model arm input
values, arm layer muscle length and tension in-
puts were calculated. One thousand random input
patterns, covering the input space, were presented
to the network during training, after which fur-
ther training did not produce qualitative changes
in the trained weights. The neural model param-
eters were set empirically as follows. For cortical
units, decay constant ¢, and ceiling maz in Eq. 1
were set to -4.0 and 5.0 respectively. Their ¢ and
output gain parameter c, values in Eq. 2 were set
to 0.001 and 0.9, respectively. For arm layer units,
g and ¢, values in Eq. 2 were set to 0.1 and 0.8,
respectively. The learning rate n and # value in
the learning rule were empirically set to 0.1 and
0.32, respectively.

The trained network produced several results.
Muscle length and tension maps formed during
training. To examine the formation of muscle
length and tension maps, the network was an-
alyzed to determine which muscle length and
tension input each cortical unit responded most
strongly. Twelve input patterns were presented,
each having only one muscle length or tension unit
(arm unit) activated. Since the arm units rep-
resent the length and tension of the six muscles
of the model arm, each test pattern corresponded
to the unphysiological situation where either the
length or tension of only one muscle is activated
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Figure 2: Cortical units tuned to muscle length
after training.
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Figure 3: Cortical units trained to upper arm
extensor (E) and flexor (F) muscle lengths after
training.

(this was not the case with the training patterns).
A cortical unit is taken to be “maximally tuned” to
an arm input unit if the activation corresponding
to the input unit is largest and above a threshold
of 0.5.

Fig. 2 shows the maximal tuning of cortical
units to muscle length after training. The mus-
cle lengths are labeled as follows: E for upper
arm extensor, F for upper arm flexor, B for up-
per arm abductor, D for upper arm adductor, O
for lower arm extensor and C for lower arm flexor
(e.g., the unit in the upper left corner of the cor-
tex is maximally tuned to the upper arm abductor
(B) for muscle length). Cortex units marked “”
were found not to be tuned to the length of any
muscle. Clusters of units responsive to the same
muscle became more uniform in size after training.
The size of the clusters ranged from 2 to 10 before
training, but ranged from 3 to 4 after training, and
their shape became more regular.
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Figure 4: Muscle length tuning of cortex layer af-
ter lesion.

Although difficult to see in Fig. 2, clusters
of units tuned to antagonist muscles were usually
pushed maximally apart from one another during
training. Consider the clusters shown in Fig. 3,
where only those units tuned in Fig. 2 to upper
arm extensor (E) and flexor muscles (F) are dis-
played. After training, the clusters of “E”s and
“F”s are generally pushed maximally apart, evenly
spaced and more uniform in size. The network
thus captures the mechanical constraint imposed
by the model arm that two antagonist muscles can-
not be stretched at the same time.

Lesioning the Model

For this study, an 8 by 8 contiguous patch of
the cortex layer in the trained network was le-
sioned to simulate a sudden focal lesion such as
occurs in stroke. For lesioned cortical units, the
activation of the unit was fixed at 0.0. In addition,
connections to lesioned cortical units were severed.
The effect of the lesion on map formation was ex-
amined immediately following the lesion and af-
ter continually training the network with 4000 ad-
ditional random patterns. A copy of the intact
trained network before lesioning was also continu-
ally trained with the same 4000 random patterns
to serve as a control. Little change was seen in the
feature map with the control network.

RESULTS

Our study of simulated lesions in a propriocep-
tive cortical map has produced strikingly different
results from those found with topographic maps
[2, 5]. For example, Fig. 4 shows the muscle
length map of the cortex layer immediately fol-
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Figure 5: Muscle length tuning of cortex layer af-
ter further training.

lowing the focal lesion. The lesion site is marked
by “*”’s. A perilesion zone of relatively inactive
cortical elements (“-”s) appears. With time, as
the map reorganizes in the context of continued
proprioceptive input, the perilesion zone gradually
expands, as is seen in Fig. 5 (after 4000 further
random input stimuli). This perilesion zone is due
to loss of intracortical excitatory connections from
the lesioned region to surrounding elements, and
it expands due to synaptic changes of the com-
petitive learning process. There is also dramatic
reorganization of the rest of the map, with 68% of
the remaining elements changing the muscle group
to which they are most sensitive (compare Figs. 4
and 5). However, the rearrangement may not be
as complete as the figures suggest, since the maps
show maximal tuning of cortical units. With fur-
ther learning, the perilesion zone enlarges slightly
and reorganization of the map continues.

Further evidence of the dynamics of the per-
ilesion zone of inactivity is provided through an
analysis of the mean activation level of cortical
units averaged over all the test input patterns.
We examined the mean activation level of corti-
cal units at various distances from the lesion site.
Before the lesion was introduced, the mean acti-
vation level of all regions was 0.18. Immediately
after the lesion, the mean activation of the cortical
units directly adjacent to the lesion site (distance
d=1) dropped to 0.04 and additional training of
the lesioned network produced a further drop to
0.01. Cortical units at distance d=2 from the le-
sion experienced a slight increase in mean activa-
tion immediately following the lesion(0.20); fur-
ther training produced a drop in mean activation
to 0.09. Cortical units at a distance d=3 experi-



enced a significant jump in mean activation level
to 0.32, which diminished somewhat with train-
ing (0.29), while those at distances greater than
3 experienced an increase after training (0.20 fol-
lowing the lesion, 0.27 after further training). For
the cortical layer as a whole, the mean activation
following the lesion was 0.21, even after training.

Most interesting are the results seen at a dis-
tance d=2 from the lesion site. These cortical
units are responsive immediately following the le-
sion, suggesting that there is potential for prevent-
ing growth of the perilesion zone of impairment.
However, after further training, they too become
part of the inactive region, as evidenced by the
decreased mean activation level for this zone af-
ter training. Immediately following the lesion, el-
ements bordering the lesion channel a greater per-
centage of their output to cortical units at a dis-
tance d=2 from the lesion site. However, synaptic
changes from further training reverse this effect,
thereby extending the inactive perilesion zone.

CONCLUSIONS

A model of cortical map formation based on
proprioceptive input from a simulated upper ex-
tremity was used to simulate brain adaptation
to a sudden focal lesion such as transpires with
stroke. A region of depressed activity surround-
ing the lesion site appeared immediately following
introduction of a sudden focal lesion, and gradu-
ally increased in size with further training of the
neural model. This result is strikingly different
from that seen with model topographic maps [2,
10], and developing a better understanding of the
different mechanisms involved is an important re-
search priority. The inactive perilesion zone seen
here is particularly interesting because it resem-
bles the ischemic penumbra described in-stroke,
where neurons surrounding a brain infarction can
be dysfunctional but not dead [3]. Our results sug-
gest the hypothesis that in some situations part of
the ischemic penumbra may be caused by a loss
of lateral excitatory connections from the lesioned
region, and this may worsen due to normal synap-
tic plasticity. This contrasts with the more gener-
ally held view that the dysfunctional lesion area is
caused by borderline ischemia only.

This computational model of feature map
adaptation to sudden focal damage is of interest to
the modeling community as a whole as it demon-
strates that current neural network models can be
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used effectively to study diseases. Neural mod-
els that simulate disorders compliment traditional
methods for examining brain disorders. Lesion
size and location can be controlled and uniformly
varied over large numbers of hypothetical subjects.
The simulations also permit detailed inspection of
the mechanisms underlying brain disorders.
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